Beyond Thermal Performance Curves: Modeling Time-Dependent Effects of Thermal Stress on Ectotherm Growth Rates.

نویسندگان

  • Joel G Kingsolver
  • H Arthur Woods
چکیده

Thermal performance curves have been widely used to model the ecological responses of ectotherms to variable thermal environments and climate change. Such models ignore the effects of time dependence-the temporal pattern and duration of temperature exposure-on performance. We developed and solved a simple mathematical model for growth rate of ectotherms, combining thermal performance curves for ingestion rate with the temporal dynamics of gene expression and protein production in response to high temperatures to predict temporal patterns of growth rate in constant and diurnally fluctuating temperatures. We used the model to explore the effects of heat shock proteins on larval growth rates of Manduca sexta. The model correctly captures two empirical patterns for larval growth rate: first, maximal growth rate and optimal temperature decline with increasing duration of temperature exposure; second, mean growth rates decline with time in diurnally fluctuating temperatures at higher mean temperatures. These qualitative results apply broadly to cases where proteins or other molecules produced in response to high temperatures reduce growth rates. We discuss some of the critical assumptions and predictions of the model and suggest potential extensions and alternatives. Incorporating time-dependent effects will be essential for making more realistic predictions about the physiological and ecological consequences of temperature fluctuations and climate change.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluctuating temperatures and ectotherm growth: distinguishing non-linear and time-dependent effects.

Most terrestrial ectotherms experience diurnal and seasonal variation in temperature. Because thermal performance curves are non-linear, mean performance can differ in fluctuating and constant thermal environments. However, time-dependent effects--effects of the order and duration of exposure to temperature--can also influence mean performance. We quantified the non-linear and time-dependent ef...

متن کامل

Thermal limitation of performance and biogeography in a free-ranging ectotherm: insights from accelerometry.

Theoretical and laboratory studies generally show that ectotherm performance increases with temperature to an optimum, and subsequently declines. Several physiological mechanisms probably shape thermal performance curves, but responses of free-ranging animals to temperature variation will represent a compromise between these mechanisms and ecological constraints. Thermal performance data from w...

متن کامل

Time-Dependent Hygro-Thermal Creep Analysis of Pressurized FGM Rotating Thick Cylindrical Shells Subjected to Uniform Magnetic Field

Time-dependent creep analysis is presented for the calculation of stresses and displacements of axisymmetric thick-walled cylindrical pressure vessels made of functionally graded material (FGM). For the purpose of time-dependent stress analysis in an FGM pressure vessel, material creep behavior and the solutions of the stresses at a time equal to zero (i.e. the initial stress state) are needed....

متن کامل

Performance Modeling of Power Generation System of a Thermal Plant

The present paper discusses the development of a performance model of power generation system of a thermal plant for performance evaluation using Markov technique and probabilistic approach. The study covers two areas: development of a predictive model and evaluation of performance with the help of developed model. The present system of thermal plant under study consists of four subsystems with...

متن کامل

Analysis of Heat transfer in Porous Fin with Temperature-dependent Thermal Conductivity and Internal Heat Generation using Chebychev Spectral Collocation Method

In this work, analysis of heat transfer in porous fin with temperature-dependent thermal conductivity and internal heat generation is carried out using Chebychev spectral collocation method. The numerical solutions are used to investigate the influence of various parameters on the thermal performance of the porous fin. The results show that increase in convective parameter, porosity parameter, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The American naturalist

دوره 187 3  شماره 

صفحات  -

تاریخ انتشار 2016